-

N.B.: Different languages can express different contents  -  (Italiano  English)

 

Researchers Find Genetic Alterations in Head and Neck Cancers Associated with HPV Infection, Smoking (2015-02-02)

Researchers have discovered genomic differences — with potentially important clinical implications — in head and neck cancers caused by infection with the human papillomavirus (HPV). HPV is the most common sexually transmitted virus in the United States, and the number of HPV-related head and neck cancers has been growing.
Almost every sexually active person will acquire HPV at some point in their lives, according to the Centers for Disease Control and Prevention.

At the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health (NIH), working as part of a team of scientists with The Cancer Genome Atlas (TCGA) Network, the researchers also uncovered new smoking-related cancer subtypes and potential new drug targets, and found numerous genomic similarities with other cancer types.
Taken together, this study’s findings may provide more detailed explanations for the roles that HPV infection and smoking play in head and neck cancer risk and disease development, and may offer potential novel diagnostic and treatment directions. The study is the most comprehensive examination to date of genomic alterations in head and neck cancers. The results were published online January 28, 2015, in the journal Nature.

“The rapid increase in HPV-related head and neck cancers, noticeably in oropharyngeal tumors, has created an even greater sense of urgency in the field,” said D. Neil Hayes, M.D., M.P.H, senior author of the study report and associate professor of medicine at the University of North Carolina (UNC) and the UNC Lineberger Cancer Center at Chapel Hill. Oropharyngeal cancer starts in the oropharynx, which is the part of the throat just behind the mouth. “We’re uncovering differences between tumors with and without HPV infection, and these new data are allowing us to rethink how we approach head and neck cancers.”

In the study, researchers performed genomic analyses on 279 tumors—head and neck squamous cell carcinomas (HNSCC)—from untreated patients. Approximately 80 percent of tumor samples were from individuals who smoked. The majority of samples were oral cavity cancers (61 percent) and larynx cancers (26 percent).

While only about 25 percent of head and neck cancers are linked to HPV infection, TCGA researchers confirmed that many patients with HPV-associated tumors have specific alterations of the gene FGFR3 and mutations in the PIK3CA gene, which are also found in a much broader set of mutations in smoking-related tumors. In contrast, while the EGFR (epidermal growth factor receptor) gene is frequently altered in HPV-negative tumors in smokers, it is rarely abnormal in HPV-positive tumors. Such insights may help in developing potential therapies and biomarkers, noted Dr. Hayes.

Head and neck cancers comprise a constellation of tumors of the mouth, throat, larynx, nasal cavity, salivary gland and elsewhere that have frequently been attributed to tobacco and alcohol use in most patients. Some 90 percent are squamous cell carcinomas, which occur in the surface layers of cells in the body.

Scientists found that more than 70 percent of head and neck cancers had alterations in genes for growth factor receptors (EGFR, FGFR, IGFR, MET, ERBB2, DDR2), signaling molecules (PIK3CA, HRAS) and cell division regulation (CCND1). These genes may play roles in pathways that control cell growth and proliferation, and for which therapies are either available or in development.

The investigators also discovered new clues about drug resistance in head and neck cancers. They found that genes affecting about 40 percent of such cancers form key parts of a pathway that helps determine cell survival and drug resistance. They showed that extra copies of the genes FADD and BIRC2, or mutations in or the absence of the CASP8gene in smoking-related cancers — all which affect the process of programmed cell death — may underlie the resistance of cancer cells to current treatments. Similarly, the absence of the TRAF3 gene, or extra copies of a gene for the growth-promoting E2F1 protein in HPV-related cancers, may also increase resistance.

The findings showed similarities between head and neck cancer genomes and other cancers, including squamous cell lung and cervical cancer, indicating possible common paths of cancer development, and potential treatment opportunities.
Previous research conducted by the TCGA Network also identified a characteristic molecular pattern shared by head and neck, lung, and some bladder cancers.

For more information
Nature
Comprehensive genomic characterization of head and neck squamous cell carcinomas

U.S. National Institute on Deafness and Other Communication Disorders

MDN